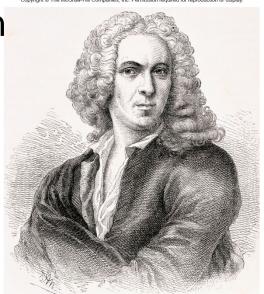


Microbial Taxonomy and the Evolution of Diversity

Copyright © McGraw-Hill Global Education Holdings, LLC. Permission required for reproduction or display.

Introduction to Microbial Taxonomy


- Taxonomy
 - science of biological classification
 - consists of three separate but interrelated parts
 - classification arrangement of organisms into groups (taxa; s., taxon)
 - nomenclature assignment of names to taxa
 - identification determination of taxon to which an isolate belongs

Natural Classification

- Arranges organisms into groups whose members share many characteristics
 - first such classification in 18th century developed by Linnaeus

-based on anatomical characteristics

 This approach to classification does not necessarily provide information on evolutionary relatedness

Polyphasic Taxonomy

- Used to determine the genus and species of a newly discovered prokaryote
- Incorporates information from genetic, phenotypic, and phylogenetic analysis

Phenetic Classification

- Groups organisms together based on mutual similarity of phenotypes
- Can reveal evolutionary relationships, but not dependent on phylogenetic analysis

- i.e., doesn't weigh characters

 Best systems compare as many attributes as possible

Phylogenetic Classification

- Also called phyletic classification systems
- Phylogeny
 - evolutionary development of a species
- Usually based on direct comparison of genetic material and gene products
 - Woese and Fox proposed using small subunit (SSU) rRNA nucleotide sequences to assess evolutionary relatedness of organisms

Genotypic Classification

- Comparison of genetic similarity between organisms
 - individual genes or whole genomes can be compared
 - 70% homologous belong to the same species

Taxonomic Ranks - 1

- Microbes are placed in hierarchical taxonomic levels with each level or rank sharing a common set of specific features
- Highest rank is domain
 - Bacteria and Archaea microbes only
 - Eukarya microbes and macroorganisms
- Within domain
 - phylum, class, order, family, genus, species
 epithet, some microbes have subspecies

Species

- Definition
 - collection of strains that share many stable properties and differ significantly from other groups of strains
- Also suggested as a definition of species
 - collection of organisms that share the same sequences in their core housekeeping genes

Strains

- Descended from a single, pure microbial culture
- Vary from each other in many ways
 - biovars differ biochemically and physiologically
 - morphovars differ morphologically
 - serovars differ in antigenic properties

Type Strain

- Usually one of first strains of a species studied
- Often most fully characterized
- Not necessarily most representative member of species
- Cataloged by the ATCC American Type
 Culture Collection

Genus

- Well-defined group of one or more strains
- Clearly separate from other genera
- Often disagreement among taxonomists about the assignment of a specific species to a genus

Binomial System of Nomenclature

- Devised by Carl von Linné (Carolus Linnaeus)
- Each organism has two names
 - genus name italicized and capitalized (e.g., *Escherichia*) or underlined
 - species epithet italicized but not capitalized (e.g., *coli*) or underlined
- Can be abbreviated after first use (e.g., *E. coli*)
- A new species cannot be recognized until it has been published in the International Journal of Systematic and Evolutionary Microbiology

Techniques for Determining Microbial Taxonomy and Phylogeny

- Classical characteristics
 - morphological
 - physiological
 - biochemical
 - ecological
 - genetic

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 19.1Some Morphological Features Used
in Classification and Identification

Feature	Microbial Groups	
Cell shape	All major groups ¹	
Cell size	All major groups	
Colonial morphology	All major groups	
Ultrastructural characteristics	All major groups	
Staining behavior	Bacteria, some fungi	
Cilia and flagella	All major groups	
Mechanism of motility	Gliding bacteria, spirochetes, protists	
Endospore shape and location	Some Gram-positive bacteria	
Spore morphology and location	Bacteria, protists, fungi	
Cellular inclusions	All major groups	
Colony color	All major groups	

1 Used in classifying and identifying at least some bacteria, archaea, fungi, and protists.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 19.2	Some Physiological and Metabolic Characteristics Used in Classification and Identification		
Carbon and nitrogen sources			
Cell wall constituents			
Energy sources			
Fermentation products			
General nutritional type			
Growth temperature optimum and range			
Luminescence			
Mechanisms of energy conversion			
Motility			
Osmotic tolerance			
Oxygen relationships			
pH optimum and growth range			
Photosynthetic pigments			
Salt requirements and tolerance			
Secondary metabolites formed			
Sensitivity to metabolic inhibitors and antibiotics			
Storage inclusions			

Ecological Characteristics

- Life-cycle patterns
- Symbiotic relationships
- Ability to cause disease
- Habitat preferences
- Growth requirements

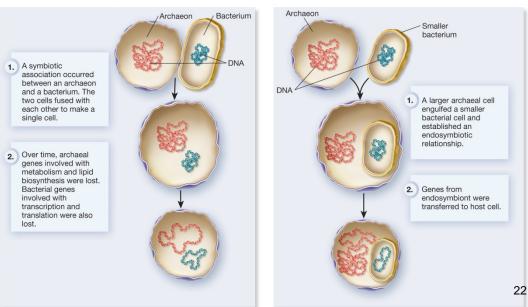
Molecular Approaches

- Extremely important because almost no fossil record was left by microbes
- Allows for the collection of a large and accurate data set from many organisms
- Phylogenetic inferences based on these provide the best analysis of microbial evolution currently available

Molecular Characteristics

- Nucleic acid base composition
 - G + C content Mol% G + C = (G + C/G + C + A + T)100
 - variation within a genus usually <10%
- Nucleic acid hybridization
- Nucleic acid sequencing
 - Small subunit rRNAs (SSU rRNAs)
 - sequences of 16S and 18S rRNA most powerful and direct method for inferring microbial phylogenies and making taxonomic assignments at genus level
 - When comparing rRNA sequences between 2 organisms, their relatedness is represented by percent sequence homology
 - 70% is cutoff value for species definition
- Genomic fingerprinting
- Amino acid sequencing

Evolution of the Three Domains of Life


- Hypothesized that when RNA became enclosed in a lipid sphere, the first primitive life forms were generated
- Last universal common ancestor (LUCA)
 - the root of the tree of life, based on SSU rRNA, shows the earliest region is on the bacterial branch
 - thought that Archaea and Eukarya evolved independently of Bacteria

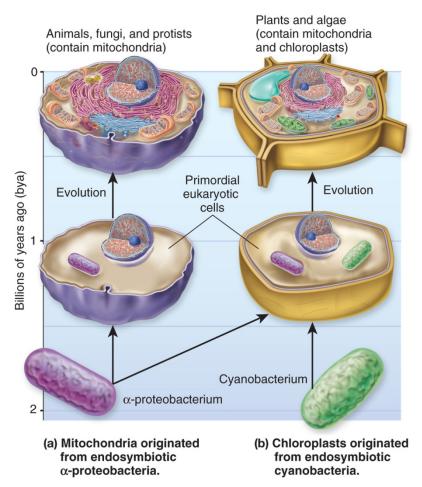
Property	Bacteria	Archaea	Eukarya
Membrane-Enclosed Nucleus with Nucleolus	Absent	Absent	Present
Complex Internal Membranous Organelles	Absent	Absent	Present
Cell Wall	Almost always have peptidoglycan containing muramic acid	Variety of types, no muramic acid; some have pseudomurein	No muramic acid
Membrane Lipid	Have ester-linked, straight- chained fatty acids	Have ether-linked, branched isoprene-derived chains	Have ester-linked, straight-chained fatty acids
Gas Vesicles	Present	Present	Absent
Transfer RNA	Thymine present in most tRNAs	No thymine in T or T Ψ C arm of tRNA	Thymine present
	<i>N</i> -formylmethionine carried by initiator tRNA	Methionine carried by initiator tRNA	Methionine carried by initiator tRNA
Polycistronic mRNA	Present	Present	Present in some protists
mRNA Introns	Rare	Rare	Present
mRNA Splicing, Capping, and Poly-A Tailing	Absent	Absent	Present
Ribosomes			
Size	70S	70S	80S (cytoplasmic ribosome
Elongation factor 2 reaction with diphtheria toxin	Does not react	Reacts	Reacts
Sensitivity to chloramphenicol and kanamycin	Sensitive	Insensitive	Insensitive
Sensitivity to anisomycin	Insensitive	Sensitive	Sensitive
DNA-Dependent RNA Polymerase			
Number of enzymes	One	One	Three
Structure	Simple subunit pattern (6 subunits)	Complex subunit pattern similar to eukaryotic enzymes (8–12 subunits)	Complex subunit pattern (12–14 subunits)
Rifampicin sensitivity	Sensitive	Insensitive	Insensitive
RNA Polymerase II Type Promoters	Absent	Present	Present
Metabolism			
Similar ATP synthase	No	Yes	Yes
Methanogenesis	Absent	Present	Absent
Nitrogen fixation	Present	Present	Absent
Chlorophyll-based photosynthesis	Present	Absent	Present ¹
Chemolithotrophy	Present	Present	Absent

1 Present in chloroplasts (of bacterial origin).

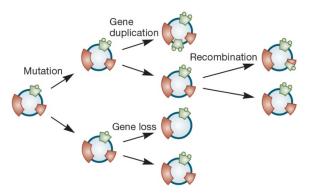
Steps in Endosymbiotic Hypothesis

- Ancestral eukaryotic cell had lost cell wall
- Engulfment of an endosymbiote occurred
 - produced needed product such as ATP
- Genome reduction occurred
- Evolution of organelles
 - mitochondria
 - hydrogenosome
 - chloroplasts

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

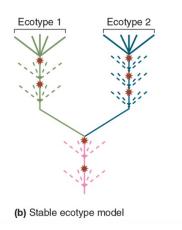

(a) Origin from cellular fusion

(b) Origin from endosymbiotic relationship


Mitochondria and Chloroplasts

- Believed to be descended from *Rickettsiae* and *Prochlorococcus*, engulfed in a precursor cell
 - provided essential function for host
 - engulfed organism thought to be aerobic, thereby eliminating oxygen toxicity to the host cell
 - host provided nutrients/safety for engulfed organism

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



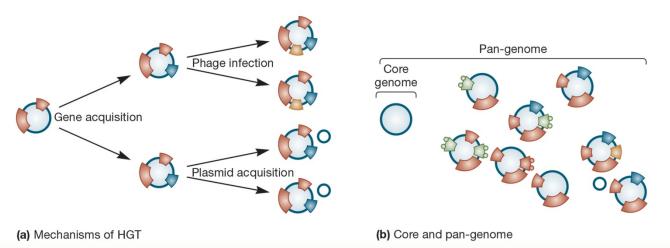
Microbial Evolutionary Processes

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display

(a) Mechanisms of genetic variation within a homogeneous population

- Bacteria and Archaea are asexual
- Heritable changes occur
 - mutation and natural selection
 - gene loss or gain
 - intragenomic recombination
 - horizontal gene transfer (HGT)

Anagenesis Model of Microbial Diversity


- Microevolution
 - also known as genetic drift
- Small, random genetic changes over generations which slowly drive either speciation or extinction, both of which are forms of macroevolution
 - only adaptive mutants are selected

Ecotype Model for Microbial Diversity

- Genetically similar population of microbes is ecologically distinct
- Members of specific ecosystem diversify and gain adaptive mutation to compete for resources
- Extinction occurs in other ecosystems and reduced genetic variation
- Punctuated equilibria

Horizontal Gene Transfer (HGT) Model for Microbial Diversity

- Pan-genome is complete gene repertoire of a taxon
 - includes the core genome plus "housekeeping" and dispensable genes
 - pan-genome genes acquired through HGT
 - requires genetically heterogeneous group of microbes

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Bergey's Manual of Systematic Bacteriology

- Accepted system of bacterial taxonomy
- Detailed work containing descriptions of all bacterial species currently identified
- First edition published in 1984, with significantly updated editions since