## Terpenes/Terpenoids

- Large structurally diverse family of natural products >35,000
- Formed from C<sub>5</sub> Isoprene units joined together
  The fundamental building block for terpenes
- Joining of C5 units through Head to tail or Tail to tail fashion
- Classification is based on the number of isoprene units forming the carbon skeletons
- Stereoisomers, optical isomers
- Each member of a terpenoid subgroup is derived from a single parent compound(i.e. Monoterpenes from geranyl-PP)

## **Classification of Terpenoids**

 Most natural terpenoid hydrocarbon have the general formula (C<sub>5</sub>H<sub>8</sub>)<sub>n</sub>. They can be classified on the basis of value of n or number of carbon atoms present in the structure.

| S.No. | Number of carbon<br>atoms | Value of n | Class                     |
|-------|---------------------------|------------|---------------------------|
| 1.    | 10                        | 2          | Monoterpenoids(C10H16)    |
| 2.    | 15                        | 3          | Sesquiterpenoinds(C15H24) |
| 3.    | 20                        | 4          | Diterpenoids(C20H32)      |
| 4.    | 25                        | 5          | Sesterpenoids(C25H40)     |
| 5.    | 30                        | 6          | Triterpenoids(C30H48)     |
| 6.    | 40                        | 8          | Tetraterpenoids(C40H64)   |
| 7.    | >40                       | >8         | Polyterpenoids(C5H8)n     |

- Each class can be further subdivided into subclasses according to the number of rings present in the structure:
- i) Acyclic Terpenoids: They contain open structure.
- ii) Monocyclic Terpenoids: They contain one ring in the structure.
- iii) Bicyclic Terpenoids: They contain two rings in the structure.
- iv) Tricyclic Terpenoids: They contain three rings in the structure.
- v) Tetracyclic Terpenoids: They contain four rings in the structure.



## **Terpenoid-Classification**

| SR<br>NO. | NO. OF<br>CARBON<br>ATOM | VALUE<br>n | CLASS                     |
|-----------|--------------------------|------------|---------------------------|
| 1         | 10                       | 2          | MONOTERPENOIDS (C10H16)   |
| 2         | 15                       | 3          | SESQUITERPENOIDS (C15H24) |
| 3         | 20                       | 4          | DITERPENOIDS (C20H32)     |
| 4         | 25                       | 5          | SESTERPENOIDS (C25H40)    |
| 5         | 30                       | 6          | TRITERPENOIDS (C30H48)    |
| 6         | 40                       | 8          | TETRATERPENOIDS (C40H64)  |
| 7         | >40                      | >8         | POLYTERPENOIDS (C5H8)n    |



### Structural Characteristics 1. Isoprene Rule

#### **ISOPRENE RULE**

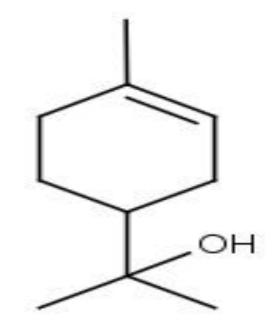
- · In 1887, Wallach proposed the isoprene rule.
- "It states that the skeleton structures of all terpenoids are built up of isoprene units or 2-methyl 1,3-butadiene".

CH<sub>2</sub>= CH-CH=CH<sub>2</sub> CH<sub>3</sub>

### 2. Special Isoprene Rule

The precursor to  $C_{10}$  terpenoids (monoterpenes) is geraniol diphosphate, which consists of two  $C_5$  "isoprene units" that are joined "head-to-tail"

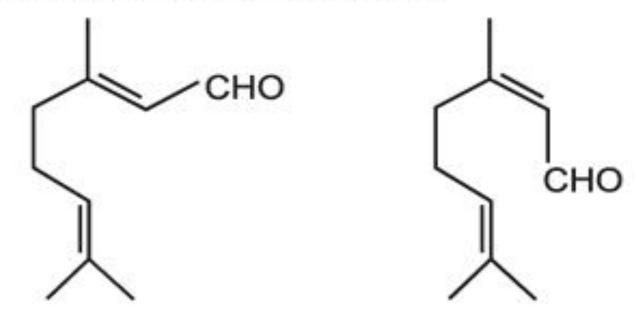



head - tail head - tail

 $C_{15}$  sesquiterpenoids are derived from farnesyl diphosphate, which consists of three  $C_5$  "isoprene units" that are joined "head-to-tail"

C<sub>20</sub> diterpenoids are derived from geranylgeranyl diphosphate, which consists of four C<sub>5</sub> "isoprene units" that are joined "head-to-tail"

3


In monoterpene cryptone contain nine carbon atoms not exact multiple of five. Therefore it fails to obey the Isoprene rule a)  $\alpha$  – Terpinol C<sub>10</sub> H<sub>18</sub> O



# b) Citral - $C_{10} H_{16} O$

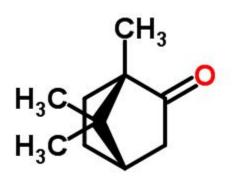
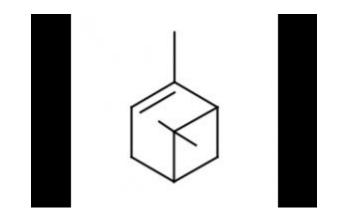

it is cyclic terpenoid. The chief constituents of lemon grass oil, by steam distillation. Used as flavouring agent in perfumes and cosmetics

Figure 1. Chemical structure of the citral.




### c) Champhor - C<sub>10</sub> H<sub>16</sub> O It is bicyclic monoterpenoids occures in camphore tree it is used as plastisiser

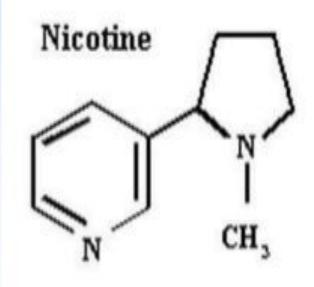
It is bicyclic monoterpenoids occures in camphore tree it is used as plastisiser for the production of celluloid as disinfectants and pain reliever.



## D) A – pinene $C_{10} H_{16}$

It is bicyclic monoterpenoids occure in terpentine oil it is used as terpenes and also used in paint thiner




## Alkaloids

Origin, History, Introduction

- the term "alkaloid" (alkali-like) is commonly used to designate basic heterocyclic nitrogenous compounds of plant origin that are physiologically active.
- The term alkaloid ot Pflanzenlkalien was coined by Meissner, a German pharmacist, in 1819.
- The mankind has been using alkaloid for various purposes like poisons, medicines, poultices, teas etc.
- The French chemist, Derosne in 1803, isolated Narcotine.



## NICOTINE



Nicotine is a potent parasympathomimetic

### alkaloid found in the

nightshade family of plants (Solanaceae) and a stimulant drug.

It is made in the roots of and accumulates in the leaves of the <u>nightshade</u> family of plants.

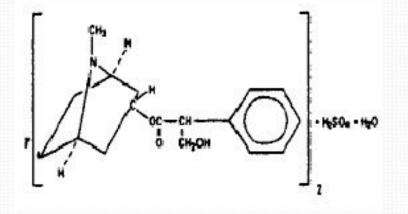
# CHEMISTRY

Nicotine is a <u>hygroscopic</u>, colorless oily liquid that is readily soluble in alcohol, ether or light petroleum. It is <u>miscible</u> with <u>water</u> in its <u>base</u> form.

nicotine forms <u>salts</u> with <u>acids</u> that are usually solid and water soluble.

Nicotine is <u>optically active</u>, having two <u>enantiomeric</u> forms. The naturally occurring form of nicotine is <u>levorotatory</u> (-)nicotine. The <u>dextrorotatory</u> form, (+)-nicotine is physiologically less active than (-)-nicotine. (-)-nicotine is more toxic than (+)-nicotine.

# Atropine


- Alkaloid of the belladonna plant.
- Belladonna: Beautiful Lady.



- Preparations of belladonna were known to the ancient Hindus and have been used by physicians for many centuries.
- In India, the root and leaves of the jimson weed plant were burned and the smoke inhaled to treat asthma.

## Atropine

- Formed by combination of an aromatic acid, tropic acid, and a complex organic base, tropine
- Naturally occurring atropine is *l*(-)-hyoscyamine
- Commercial preparation is racemic



CONTRACTOR OF

Classification of alkaloids is according to the nature of the hetrocyclic ring or nucleus present in the molecule

#### Types of the alkaloid classifications

- By the chemical structure:
- 1) derivatives of pyrrolidine (sthrahidrine, turicine)
- 2) derivatives of tropane (atropine, cocaine)
- 3) derivatives of pyperidine (lobeline, coniine)
- 4) derivatives of pyridine (nicotine, anabasine)
- 5) derivatives of pyrrolysidine (platyphylline)
- 6) derivatives of quinolysidine (pahicarpine, lupinine)
- 7) derivatives of quinoline (quinine)
- 8) derivatives of isoquinoline (papaverine, morphine)
- 9) derivatives of indol (reserpine, strychnine)
- 10) derivatives of purine (caffeine, theobromine, theophylline)

### Importance of alkaloids

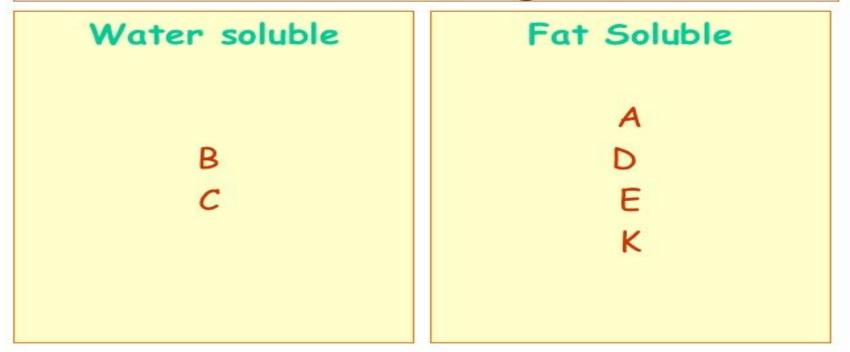
## **Pharmacological actions:**

The alkaloids have a wide range of pharmacological actions:

|    | Pharmacological action            | Example                                                        |  |
|----|-----------------------------------|----------------------------------------------------------------|--|
| 1  | Analgesic & narcotic              | Morphine, Codeine                                              |  |
| 2  | CNS stimulant                     | Strychnine                                                     |  |
| 3  | Mydriatic                         | Atropine                                                       |  |
| 4  | Miotic/Glaucoma                   | Pilocarpine                                                    |  |
| 5  | Hypertensive                      | Ephedrine                                                      |  |
| 6  | Antihypertensive                  | Reserpine                                                      |  |
| 7  | Antineoplastic/anti cancer        | Vinblastine, Vincristine                                       |  |
| 8  | Emetic                            | Emetine, Sanguinarine                                          |  |
| 9  | Cardiac<br>arrhythmia/dysrhythmia | Quinidine                                                      |  |
| 10 | Skeletal muscle relaxant          | (+)-Tubocurarine                                               |  |
| 11 | Oxitocic                          | Ergonovine (also known as<br>Ergometrine) and it's derivatives |  |

### Vitamins

ABCDE...Vitamins!


### VITAMINS

- Vitamins are made up of carbon, hydrogen and oxygen.
- Vitamins are called micronutrients because they are needed in only very small quantities. They all have chemicals names but they are usually referred to by letters.

### MAIN FUNCTIONS

- Vitamins are essential to the body:
  - To maintain health
  - To help prevent deficiency diseases such as Beriberi (weakened muscles, heart, nerves and digestive system) and rickets (softening of the bones)
  - To regulate the repair of body cells
  - To help combat the ageing process
  - To help to process carbohydrates and release energy in the body

#### VITAMINS -Two main categories



#### Water soluble

- Cannot be stored in body
  regular supply needed
- Excess is excreted in urine - no danger of toxic levels
- Unstable to heat and light, leach into cooking liquids

#### Fat Soluble

- Can be stored in body regular supply not needed
- Can accumulate to toxic levels if large amounts ingested
- Fairly stable at normal cooking temperatures

### Vitamin A – 2 forms; Retinol and Beta-Carotene

#### Retinol

Named because of its concern with retina of eye Only found in animal foods

#### Beta-Carotene

Plant sources

Present with chlorophyll in plants, converted to Vitamin A in gut wall

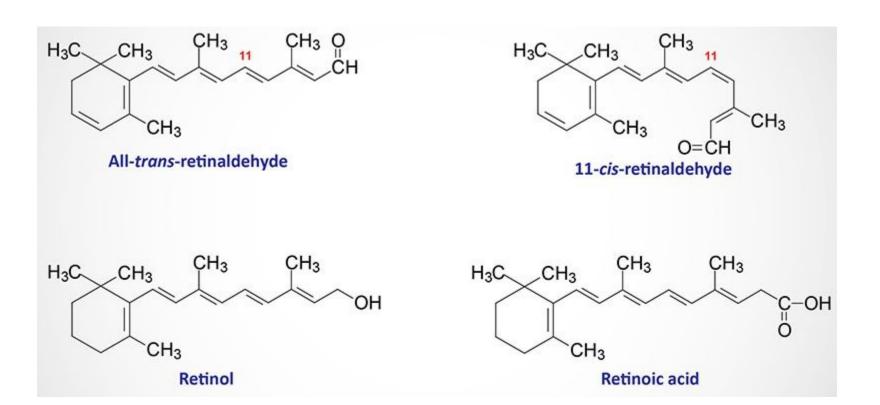
### Vitamin A - Retinol and Beta-Carotene

### Functions

- Regulates growth
- Promotes healthy skin
- Maintenance of healthy tissues
- Helps eye adapt to dim light

The moisturising vitamin!

#### Sources


<u>Retinol</u> - Cod liver oil, Liver, Dairy products, Herrings, Egg yolk <u>Beta-Carotene</u> Dark green leafy vegetables, Broccoli, Carrots, Deep orange fruits and vegetables

### Vitamin A - Retinol and Beta-Carotene

#### Effects of deficiency

- Retarded growth, malformed bones
- Long term-may lead to night blindness
- Susceptibility to infection
- Excess beta-carotene may lead to liver and bone damage

### Structure of Vit A





## Vitamin D -Calciferols

#### Functions

- Absorption and laying down of calcium and phosphorous in bones and teeth
- Regulates calcium balance between bones and blood
- Prevents rickets

#### Sources

Sunlight conversion Fish liver oils Dairy products Oily fish Margarine







### Vitamin D -Calciferols

#### Effects of deficiency

- \*Rickets in children and \*osteomalacia in adults
  - \* Conditions where bones are soft and cannot take weight of body
- \*\*Osteoporosis
  - \*\*Bones become light, less dense and prone to fractures
- Dental caries



## Vitamin E - Tocopherol

#### Functions

- Protects tissues against damage
- Promotes normal growth and development
- Helps in normal red blood cell formation

#### Sources



Pure vegetable oils Wheat wholemeal bread and Cereals egg yolk nuts

sunflower seeds



## Vitamin E - Tocopherol

#### Effects of deficiency

Deficiency is very rare but it could affect the central nervous system



## Vitamin K – Napthoquinone

#### Functions

- Needed for blood clotting, which means it helps wounds heal properly.
- There is increasing evidence that vitamin K is also needed to help build strong bones.

#### Sources

Green leafy veg Vegetable oil Cereals



## Vitamin K - Napthoquinones

#### Effects of deficiency

Deficiency is very rare but individuals with liver damage and new born infants are at a higher risk

# Vitamin $B_1$ - Thiamin

#### Functions

- Essential for release of energy from carbohydrates
- Necessary for appetite and good health
- Needed for normal functioning of nervous system

### Sources Meat Oatmeal Breakfast cereals Wheat Fortified white flour Milk Eggs Vegetables



# Vitamin B<sub>1</sub> – Thiamin

### Deficiency

- Fatigue, depression, irritability
- Beri-beri disease of nervous system

# Vitamin B<sub>2</sub> -Riboflavin

#### Functions

- Metabolism of carbohydrates, proteins and fats
- Growth, repair, development of body tissues - healthy skin, eyes and tongue
- The principal growth promoting factor in the vitamin B complex

Sources Offal Milk Cheese Eggs Yeast extracts Green Vegetables



# Vitamin B<sub>2</sub> -Riboflavin

### Deficiency

- Loss of appetite
- Swollen tongue, cracked lips, eye infection,



# Vitamin B3 -Niacin

Alberta Beef

#### Functions

- Metabolism of carbohydrates, proteins and fats
- Needed for normal functioning of nervous system

#### Sources

Meat, Offal Yeast extracts Yeast Bran, wheat, flour Some pulses, dried fruit



# Vitamin B3 -Niacin

## Deficiency

- Fatigue, depression, irritability
- Beri-beri disease of

nervous system

#### ABCDE...Vitamins!

### Vitamin B9 -Folic Acid

#### Functions

- Red blood cell formation
- Development of brain, spinal cord and skeleton in foetus
- Reduces risk of neural tube defects e.g. spina bifida
- May play role preventing heart attacks, strokes and cancer

#### Sources

- Fortified cereals
- Green leafy vegetables
- Potatoes
- bread
- Milk
- Wheat



# Vitamin B9 -Folic Acid

#### Deficiency

- Fatigue in mild cases
- Anaemia in severe cases
- Neural tube defects

Important to take folic acid prior to conception and vital during first 3 months pregnancy

### ABCDE...Vitamins!

## Vitamin C - Ascorbic Acid

## Functions

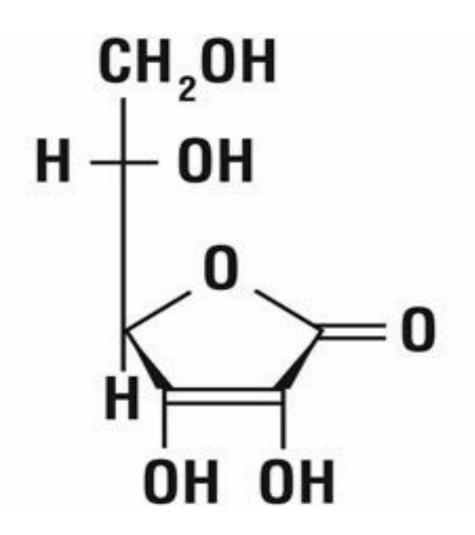
- Critical to immune system
- Formation of connective tissue, collagen
- Helps absorption of iron
- Prevents scurvy
- Promotes healing of wounds and healthy blood vessels
- Acts as antioxidant, protects cholesterol



### Sources



- Rosehips, blackcurrants,
- green peppers, kiwi, citrus
- fruits, strawberries,
- spinach, cabbage,
- broccoli




## Vitamin C - Ascorbic Acid

## Deficiency

- Weakening of connective tissue
- Susceptibility to infection
- Incomplete iron absorption
- Delayed healing of wounds
- Prevent scurvy pale skin with spots, bleeding, soft gums.

## Structure of Vit C

