

Tissue Culture Dr Gina Barnett

Café Cardiologique 29th January 2014

www.le.ac.uk

Tissue Culture

In vitro cultivation of:

- Organs (organ culture)
- Tissues (explant culture)
- Cells (cell culture)

Rat aortic explant culture

Brief History of Tissue Culture

1885	Wilhelm Roux	Embryonic chick cells maintained alive in a saline solution
1907	Ross Harrison	Frog Embryo nerve fibre outgrowth in vitro
1943	Wilton Earle	Established L-cell mouse fibroblast cell line; first continuous cell line
1952	Renato Dulbecco	Use of trypsin for generation of replicate subcultures
1952	George Gey	Established first human cell line, HeLa, from cervical carcinoma
1955	Harry Eagle	Development of defined media
1977	Nelson-Rees & Flandermeyer	Confirmed HeLa cell cross-contamination of many cell lines
1998	Thompson et al	Culture of human embryonic stem cells

To Consider...

- Pros
 - Use of animals reduced
 - Homogenous cell population, same growth requirements
 - Control of the extracellular environment
 - Able to monitor various elements and secretions without interference from other biological molecules that occurs in vivo

• Cons

- Remove interaction with other cells, hormones, support structures that would be present in vitro
- Impossible to re-create *in vivo* environment. Artificial conditions could cause cells to de-differentiate or change phenotype

Applications

- Model systems
- Toxicity Testing
- Cancer Research
- Virology
- Cell-based Manufacturing
- Genetic Counselling
- Genetic Engineering
- Gene Therapy
- Drug Screening & Development

Primary Cultures & Continuous Cultures

- Primary Cultures (e.g. HUVEC, smooth muscle cells)
 - Enzymatically isolated from tissue
 - Finite lifespan
- Continuous/Immortalised Cell lines (e.g. HeLa)
 - Random mutation or deliberate modification
 - Indefinite proliferation

Image from 'Introduction to animal cell culture Technical Bulletin' Corning

Sources

- Freshly isolated (e.g. Hayley's rat cardiomyocytes)
 - Short term or medium term culture
 - Time consuming
 - Ethical approval

Rat ventricular cardiomyocytes -Hayley Crumbie

Sources

- Commercial
 - Sources include ATCC/ECACC, Life Technologies, Lonza, Cellworks,
 - Expensive
 - Screened, tested to ensure authenticity

- Other laboratories/co-workers
 - Questionable age, health and authenticity

The Science of Happy Cells

- More than just keeping them alive
- Increase in cell number
- Physiological and biochemical functions
- Optimum growth conditions
 - Cell specific
 - Temperature
 - Substrate for attachment
 - Medium
- Avoid Contamination

You never know what you might see down the microscope!

Growth Medium

- Provides nutrients
- Maintains pH & osmolality
- Components of basal media:
 - Salts
 - Carbohydrates
 - Vitamins
 - Amino Acids
 - Metabolic Precursors (e.g. sodium pyruvate)
 - Growth Factors
 - Hormones
 - Trace Elements

Requirements differ for cell types

Growth Medium

- Buffering system
 - CO₂/Sodium bicarbonate
 - Phosphate
 - HEPES
- Phenol Red (pH Indicator)
- L-Glutamine, GlutaMAX[™]
- Supplements
 - Antibiotics and Antimycotics
 - Serum

Warm before use!

Animal Sera

- Foetal and calf bovine serum common
- Rich source of:
 - Amino acids
 - Proteins
 - Vitamins (esp fat-soluble)
 - Carbohydrates
 - Lipids
 - Hormones
 - Growth factors
 - Minerals
 - Trace elements
- Batch variance

Freeze aliquots!

Low Serum or Serum-free cultures

- More common with the development of recombinant growth factors
- Allow more defined medium
- Allows optimisation for specific cell types

Growth Vessel

- Protection from contamination
- Substrate for attachment
- Polystyrene
 - Disposable
 - Better optical properties than glass
 - 'Tissue culture-treated' hydrophilic surface for better cell attachment
- Some cells require further treatment to attach, e.g. serum, collagen, laminin, gelatin, poly-l-lysine or fibronectin
- Some cells require 'Feeder cells' layers
- Specialised coatings e.g. Matrigel

Alexis Carrel's first Pyrex D-Flask (1920's)

Matrigel Endothelial Cell Tubule Assay

•Cells are grown on a gel matrix in small wells. Within a few hours, the cells form a network of interconnecting branches, which can be seen under the microscope.

•The amount of branching and tubule formation is accepted as a measure of angiogenic potential.

'Tubules'

Growth Conditions

- **37°C** Body temperature
- 20% O₂ Optimal respiration
- 5% CO₂ Works with bicarbonate buffer to maintain pH of medium
- Humidification Helps prevent evaporation of culture media from flasks, which would result in an increase in osmotic pressure stresses or damages cells.

Are your cells happy?

- Morphology phase contrast microscopy
- Expression of specialised functions or markers
- Cell number, growth rate, viability
 - Haemocytometer
 - Trypan blue

Cell Growth Curve (Image from ATCC Handbook)

Subculturing

- Suspension cells
- Monolayer/Adherent cells
 - Require breakage of intercellular and intracellular cell-tosurface bonds
 - Mechanical dissociation (Cell Scraper)
 - Proteolytic dissociation
 - Trypsin/EDTA
- Passage number

Freezing

- Purpose is to 'bank' stocks of cells at low passage for future use.
- Use cryovials
- Cryoprotectant
 - DMSO
 - Glycerol
- Optimal freezing
 - 'Mr Frosty'/Cool Cell 1°C/min in -80°C
 - Transfer to liquid nitrogen
- Thawing

Contamination

- Microbial Contamination
 - Bacteria, yeast, fungus, viruses, mycoplasma
 - Laminar Flow Hoods
 - Aseptic technique
 - Antibiotics
 - No singing!
- Chemical Contamination
- Cross-contamination with other cell lines

Department of Cardiovascular Sciences

- Facilities both at Glenfield and LRI (RKCSB)
- See Martha Hardy or Julie Chamberlain for an induction before using TC facilities, even if you have done cell culture elsewhere.
- This is **not** optional!

Further Reading

- Two excellent resources for protocols and authenticated cells
 - European Collection of Animal Cell Cultures (ECACC), a Public Health England Collection
 - www.pheculturecollections.org.uk/collections/ecacc.aspx
 - American Type Culture Collection (ATCC)
 - www.atcc.org.uk
- Corning Technical Bulletins
- 'The Immortal Life of Henrietta Lacks' Rebecca Skloot (2010),

