PHOTOSYNTHESIS

THE LIGHT REACTION Dept of Botany PPES ACS College.

ATMOSPHERIC CO₂ IS "FIXED" BY PLANTS AND CYANOBACTERIA

- A LIGHT-DRIVEN PROCESS
- THE CARBON BECOMES AVAILABLE AS CARBO-HYDRATE (CH₂O)
- THE OVERALL REACTION IS:

 $CO_2 + H_2O \square (CH_2O) + O_2$

- CO₂ IS REDUCED
- H₂O IS OXIDIZED

THERE ARE TWO PHASES IN PHOTOSYNTHESIS

THE "LIGHT REACTION"

- H₂O IS SPLIT
 - $2 H_2 O \square O_2 + 4 [H \cdot]$
- NADPH AND ATP ARE GENERATED
- THE "DARK REACTION"
 - NADPH AND ATP FROM THE LIGHT REACTION DRIVES CH₂O PRODUCTION FROM CO₂ AND [H·]:

• 4 $[H \cdot]$ + CO₂ \Box (CH₂O) + H₂O

- IT'S REALLY A LIGHT-INDEPENDENT REACTION
- YOU HAVE ALREADY STUDIED IT
 - THE "CALVIN CYCLE"

IN-CLASS QUESTION

 H₂¹⁸O IS ADDED TO A SUSPENSION OF CHLOROPLASTS CAPABLE OF PHOTOSYNTHESIS. WHERE DOES THE LABEL APPEAR?

PHOTOSYNTHESIS OCCURS IN CHLOROPLASTS

CHLOROPLASTS CONTAIN:

- AN OUTER MEMBRANE
 - HIGH PERMEABILITY
- AN INNER MEMBRANE
 - NEARLY IMPERMEABLE
- THE STROMA
 - AQUEOUS
 - CONTAINS ENZYMES, DNA, RNA, RIBOSOMES
 - THE "THYLAKOID"
 - A MEMBRANEOUS COMPARTMENT
 - DERIVED FROM INVAGINATIONS OF INNER MEMBRANE
 - A SINGLE HIGHLY-FOLDED VESICLE
 - "GRANA" : DISK-LIKE SACS
 - GRANA ARE CONNECTED BY "STROMAL LAMELLAE"

CHLOROPLASTS

 STRUCTURE IS VERY SIMILAR TO MITOCHONDRIA
 PROBABLY EVOLVED FROM A CYANOBACTERIUM INCORPORATED INTO A NON-PHOTOSYNTHETIC EUKARYOTE (SYMBIOSIS)

- IN EUKARYOTES, THE LIGHT REACTION OCCURS IN THYLAKOID MEMBRANE
- IN PROKARYOTES, THE LIGHT REACTION OCCURS IN:
 - INNER (PLASMA) MEMBRANE
 - IN "CHROMATOPHORES"
 - INVAGINATIONS OF INNER MEMBRANE

 IN EUKARYOTES, THE DARK REACTION OCCURS IN THE STROMA

CHLOROPHYLL IS THE MAJOR PHOTORECEPTOR IN PHOTOSYNTHESIS

- A CYCLIC TETRAPYRROLE, LIKE HEME, BUT:
 - HAS A CENTRAL Mg²⁺ ION
 - A CYCLOPENTANONE RING (RING V) IS FUSED TO PYRROLE RING III
 - PARTIAL REDUCTION OF RING IV
 - IN EUKARYOTES AND CYANOBACTERIA
 - CHLOROPHYLL a
 - CHLOROPHYLL b
 - OR IN RINGS II AND IV
 - IN PHOTOSYNTHETIC BACTERIA
 - BACTERIOCHLOROPHYLL a
 - BACTERIOCHLOROPHYLL b

MOLECULAR EVENTS DURING LIGHT ABSORPTION

- PHOTONS (LIGHT "PARTICLES")
 - ENERGY = hv
- PHOTORECEPTORS
 - HIGHLY CONJUGATED MOLECULES
 - STRONGLY ABSORB VISIBLE LIGHT
- ABSORPTION OF A PHOTON USUALLY PROMOTES A GROUND-STATE ELECTRON TO A MOLECULAR ORBITAL OF HIGHER ENERGY
 - LAW OF CONSERVATION OF ENERGY
- EACH ELECTRONIC ENERGY LEVEL HAS
 VIBRATIONAL AND ROTATIONAL SUB-STATES

POSSIBLE FATES OF EXCITED ELECTRON

- INTERNAL CONVERSION (A FAST PROCESS)
 - ELECTRONIC ENERGY CONVERTED TO KINETIC (HEAT) ENERGY
 - SOMETIMES "RELAX" BACK TO GROUND STATE
 - IN CHLOROPHYLL, RELAXATION TO LOWEST EXCITED STATE
- FLUORESCENCE (A SLOWER PROCESS)
 - A PHOTON IS EMITTED, WITH DECAY TO GROUND ELECTRONIC STATE
- EXCITON TRANSFER ("RESONANCE TRANSFER")
 - EXCITATION ENERGY TRANSFERRED TO NEARBY UNEXCITED MOLECULES WITH SIMILAR ELECTRONIC PROPERTIES
- PHOTO-OXIDATION
 - THE EXCITED MOLECULE TRANSFERS ITS ELECTRON TO AN ACCEPTOR MOLECULE
 - A REDOX PAIR

EXCITON TRANSFER

"COUPLING" OF MOLECULAR ORBITALS

- ALLOWS FOR SERIAL TRANSFER OF EXCITATION
- OR COUPLED MOLECULES ACT AS A "SUPERMOLECULE"

 THIS KIND OF TRANSFER IS SEEN AS LIGHT ENERGY IS "FUNNELED" TO "PHOTOSYNTHETIC REACTION CENTERS"

PHOTO-OXIDATION

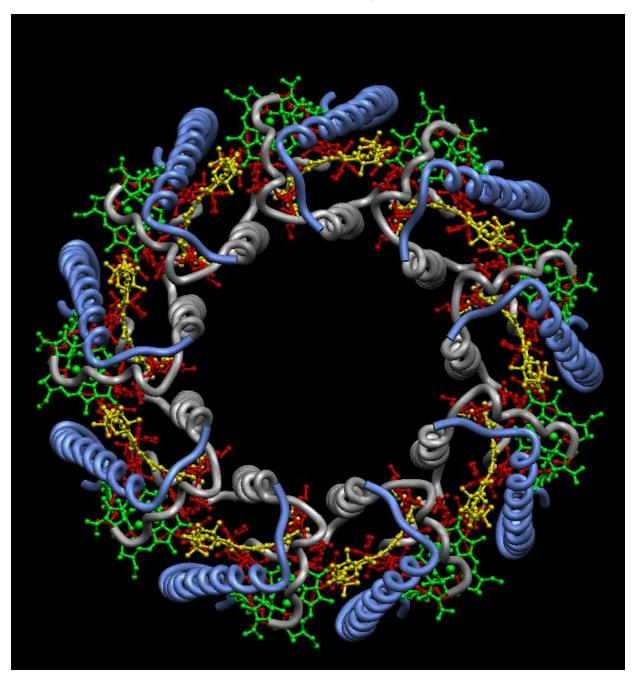
- THE EXCITED ELECTRON IS TRANSFERRED TO THE "PHOTOSYNTHETIC REACTION CENTER"
- EXCITED CHLOROPHYLL IS THE DONOR IN PHOTOSYNTHESIS
- AFTER THE TRANSFER, CHLOROPHYLL IS OXIDIZED TO A CATIONIC FREE RADICAL
- RETURNS TO ITS GROUND STATE BY OXIDIZING ANOTHER MOLECULE

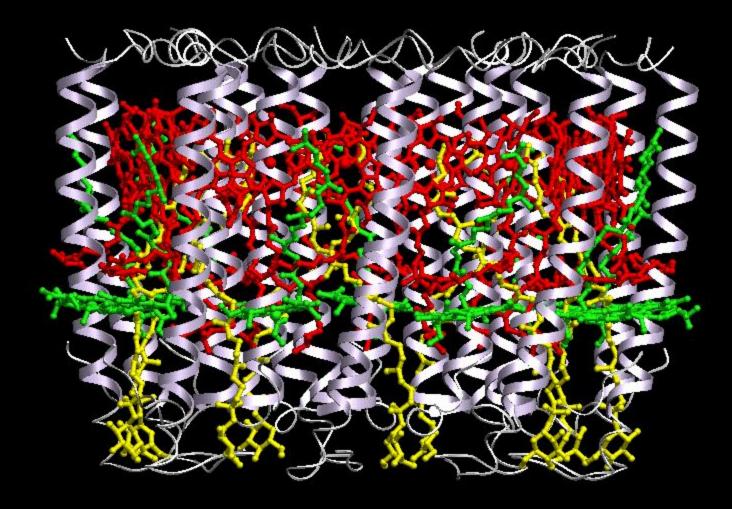
"ANTENNA" CHLOROPHYLLS

- THERE ARE ~ 300 CHLOROPHYLL MOLECULES PER REACTION CENTER
- THE FUNCTION OF MOST CHLOROPHYLLS IS <u>TO</u> <u>GATHER LIGHT</u>
- ACT LIKE ANTENNAS
 - "LIGHT-HARVESTING COMPLEXES (LHCs)
- LIGHT ENERGY IS PASSED BY EXCITON TRANSFER TO THE REACTION CENTER
 - THESE HAVE SLIGHTLY LOWER EXCITATION ENERGIES
 - >90% EFFICIENCY OF THE TRANSFER PROCESS!

THE REACTION CENTER CHLOROPHYLL

 ITS LOWEST EXCITED STATE IS AT A LOWER ENERGY LEVEL THAN EXCITED STATES OF ANTENNA CHLOROPHYLLS
 THE EXCITATION IS "TRAPPED" THERE


LIGHT-HARVESTING COMPLEXES: ACCESSORY PIGMENTS

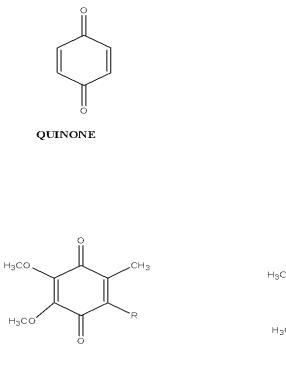

- DIFFERENT PHOTOSYNTHETIC PIGMENTS ABSORB LIGHT AT DIFFERENT FREQUENCIES
 - ALLOWS LIGHT TO BE ABSORBED AT ALL FREQUENCIES OF THE VISIBLE SPECTRUM
- LHCs CONTAIN
 - CHLOROPHYLL
 - EACH CHL. HAS A RED AND A BLUE ABSORPTION BAND
 - "ACCESSORY" PIGMENTS: "FILL IN" THE SPECTRUM
 - CAROTENOIDS (LIKE β-CAROTENE AND LYCOPENE)
 - FOUND IN ALL GREEN PLANTS
 - IN MANY PHOTOSYNTHETIC BACTERIA

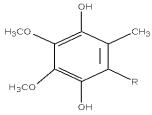
LHCs IN PURPLE PHOTOSYNTHETIC BACTERIA

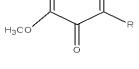
LH-2 FROM Rhodospirillium molischianum **TWO 8-FOLD SYMMETRIC CONCENTRIC RINGS** α-SUBUNITS ON INNER RING β-SUBUNITS ON OUTER RING **32 PIGMENT MOLECULES BETWEEN THE RINGS** • 24 OF THESE ARE BACTERIOCHLOROPHYLL a 8 ARE LYCOPENE MOLECULES **IN-CLASS EXERCISE:** REVIEW THE STRUCTURE OF A SIMILAR LHC, Rs. acidophilus (1KZU) LOCATE STRUCTURES DESCRIBED ABOVE (ACCESSIBLE FROM www.RCSB.org

LH2 FROM Rs. acidophhilus

LHC-<u>II</u>

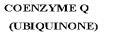

- MOST ABUNDANT MEMBRANE PROTEIN IN CHLOROPLASTS OF GREEN PLANTS
- A TRANSMEMBRANE PROTEIN
- BINDS
 - ~ 7 CHLOROPHYLL a MOLECULES
 - ~ 5 CHLOROPHYLL b MOLECULES
 - TWO CAROTENOIDS


 COMPRISES ABOUT 50% OF ALL CHLOROPHYLL IN BIOSPHERE


ONE-CENTER ELECTRON TRANSPORT IN PHOTOSYNTHETIC BACTERIA

- LOOK AT THE REACTION CENTER OF PURPLE PHOTOSYNTHETIC BACTERIA (PbRC)
- CONTAINS 3 HYDROPHOBIC SUBUNITS
 - H,L,M
 - INCLUDES 11 TRANSMEMBRANE HELICES
- THESE BIND THE FOLLOWING PROSTHETIC GPS:
 - 4 MOLECULES OF BACTERIOCHLOROPHYLL
 - 2 MOLECULES OF BACTERIOPHEOPHYTIN
- ALSO BIND
 - Fe(II) ION
 - 2 MOLECULES OF UBIQUINONE
 - OR ONE UBIQUINONE AND ONE MENAQUINONE

QUINONES CAN SERVE AS BIOLOGICAL REDOX REAGENTS



"R" IS:

ÓН

ΟН

HYDROQUINONE

-(-CH₂-CH=C-CH₂-)₁₀-H

REDUCED COENZYME Q

IN-CLASS EXERCISE

 EXPLORE THE STRUCTURE OF THE PHOTOSYNTHETIC REACTION CENTER FROM *Rb. sphaeroides* LOCATE ALL STRUCTURES DESCRIBED ON THE PREVIOUS SLIDE

ACCESS THIS MOLECULE FROM THE WEB SITE PDBid 2RCR

GEOMETRY OF THE PROSTHETIC GROUPS IN PbRC OF RHODOPSEUDOMONAS VIRIDIS

- ALMOST PERFECT TWO-FOLD SYMMETRY
- A "SPECIAL PAIR" OF BACTERIOCHLOROPHYLL MOLECULES
 - CAN BE Bchl a : MAXIMUM ABSORBPTION AT 870 nm (P870)
 - OR Bchl b : MAX. ABS. AT 960 nm (P960)
- EACH MOLECULE OF SPECIAL PAIR CONTACTS, IN TURN:
 - AN ACCESSORY Bchl b MOLECULE
 - A BPheo b MOLECULE
- THE MENAQUINONE MOLECULE IS NEAR THE L-SUBUNIT'S BPheo b
- THE UBIQUINONE ASSOCIATES WITH THE M-SUBUNIT OF BPheo b
- THERE IS AN Fe (II) BETWEEN THE UBI- AND MENAQUINONE

IN-CLASS QUESTION

 PURPLE PHOTOSYNTHETIC BACTERIA HAVE DIFFERENT PIGMENTS THAN HIGHER PLANTS. WHY IS THIS AN ADVANTAGE FOR THESE BACTERIA?

THE TRANSPORT OF ELECTRONS IN PHOTOSYNTHETIC BACTERIA

- THE FOLLOWING EVENTS OCCUR IN THE L-SUBUNIT AFTER THE ABSORPTION THE FIRST PHOTON BY THE SPECIAL PAIR
 - AN EXCITED ELECTRON IS DELOCALIZED OVER THE SPECIAL PAIR: P960

 P960*
 - P960* TRANSFERS ELECTRON TO BPheo b
 - NOW WE HAVE P960⁺ BPheo b⁻
 - THE ACCESSORY BChl b IS PART OF PATHWAY FOR ELECTRON FLOW; IT IS NOT REDUCED
 - ELECTRON MIGRATES TO Q_A
 - IS NOW REDUCED TO Q⁻
 - NOTE: THIS IS THE <u>SEMIQUINONE</u> FORM OF Q_A

THE FIRST PHOTON ABSORPTION EVENT

- P960* EXISTS FOR ONLY ~3 ps
- ELECTRON MUST BE REMOVED RAPIDLY FROM VICINITY OF P960⁺
 - WHY?
- THE QUANTUM YIELD OF THE ELECTRON TRANSFER EVENT IN PbRC IS ALMOST 100% !

Q_A TRANSFERS ITS ELECTRON TO

- THE Fe(II) ATOM DOES IS NOT DIRECTLY **INVOLVED DURING THE TRANSFER**
- Q_A NEVER BECOMES FULLY REDUCED
- A SECOND PHOTON EVENT REDUCES Q_{Δ} AGAIN SAME EVENTS AS FOR THE FIRST EVENT REDUCED Q_A PASSES THE SECOND ELECTRON TO Q_B^{-1}

FULLY REDUCED Q_B IS AN ANIONIC QUINOL (Q_B^{2-})

- Q_B²⁻ TAKES UP TWO H⁺ FROM THE CYTOPLASM
- THE TWO ELECTRONS THAT HAVE BEEN TAKEN UP BY Q_BH, ARE RETURNED TO THE OXIDIZED SPECIAL PAIR
 - THE REDOX CARRIERS CAN INCLUDE
 - A POOL OF MEMBRANE-BOUND UBIQUINONES
 - CYTOCHROME bc₁ COMPLEX
 - CYTOCHROME c₂
 - AN "ELECTRON TRANSPORT CHAIN"
 - **OCCURS WITHIN BACTERIAL PLASMA MEMBRANE**
- WHEN QH₂ TRANSFERS ELECTRONS TO CYT bc₁, THE PROTONS ARE TRANSLOCATED ACROSS THE PLASMA MEMBRANE

ELECTRON TRANSFER FROM QH₂ TO CYT c₂ OCCURS VIA A TWO-STAGE "Q-CYCLE"

- QH₂ IS A TWO-ELECTRON CARRIER
- CYT c₂ IS A ONE-ELECTRON CARRIER
- FOR EVERY 2 ELECTRONS TRANSFERRED FROM $QH_2 TO CYT c_2$, 4 H⁺ ENTER THE PERIPLASMIC SPACE
- A TRANSMEMBRANE PROTON GRADIENT
- DISSIPATION OF THE GRADIENT DRIVES ATP PRODUCTION

"PHOTOPHOSPHORYLATION"

ELECTRON TRANSPORT IN PURPLE PHOTOSYNTHETIC BACTERIA IS A CYCLIC PROCESS

- THERE IS <u>NO</u> NET OXIDATION-REDUCTION
- OVERALL PROCESS IS IRREVERSIBLE

ELECTRONS ARE TRANSFERRED TO PROGRESSIVELY LOWER ENERGY STATES

 STANDARD REDUCTION POTENTIALS ARE PROGRESSIVELY MORE POSITIVE

IN-CLASS QUESTION

 THE STANDARD REDUCTION POTENTIAL FOR THE OXIDATION OF WATER IS 0.815 V.

 $O_2 + 4 e^- + 4 H^+ \square 2 H_2O$

CAN THIS VALUE BE OBTAINED FROM PURPLE PHOTOSYNTHETIC BACTERIAL PHOTOSYNTHESIS? (ASSUME THAT THE SPECIAL PAIR CONSISTS OF BChI a) ANOTHER WAY OF ASKING THE SAME QUESTION: CAN P870⁺ OXIDIZE WATER? (EXPLAIN YOUR ANSWER.)

WHERE DO THE REDUCING EQUIVALENTS COME FROM?

IN PLANTS AND CYANOBACTERIA FROM OXIDATION OF H₂O
 NET RXN' OF PHOTOSYNTHESIS: $CO_2 + 2H_2O \square (CH_2O) + H_2O + O_2$ IN PURPLE PHOTOSYNTHETIC BACT. FROM OXIDATION OF H₂S S¹ • $S_2 O_3^{2-}$ ■ H₂ ETHANOL NET REACTION: $CO_2 + 2H_2A \square (CH_2O) + H_2O + 2A$

IN-CLASS PROBLEM

 SOME PHOTOSYNTHETIC BACTERIA USE H₂S AS A HYDROGEN DONOR AND PRODUCE ELEMENTAL SULFUR, WHILE OTHERS USE ETHANOL AND PRODUCE ACETALDEHYDE.

 WRITE THE NET REACTIONS FOR PHOTO-SYNTHESIS CORRESPONDING TO THESE BACTERIA

WHY IS NO OXYGEN PRODUCED?

WHAT HAPPENED WHEN AVAILABLE REDUCTIVE RESOURCES WERE EXHAUSTED?

- A PHOTOSYNTHETIC SYSTEM EVOLVED THAT HAD ENOUGH EMF TO ABSTRACT ELECTRONS FROM WATER
- O₂ BUILT UP AS A "TOXIC WASTE PRODUCT"

 PHOTOSYNTH. BACTERIA ARE ANAEROBES, SO THEY NOW INHABIT NARROW ECOLOGICAL NICHES

PHOTOSYNTHESIS IN PLANTS AND CYANOBACTERIA IS <u>NON-CYCLIC</u>

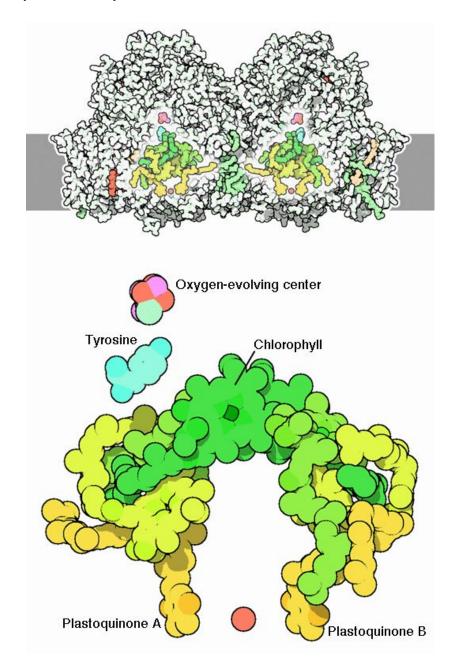
- A MULTI-STEP PROCESS
- TWO PHOTOSYNTHETIC REACTION CENTERS
 PSII AND PSI
- EACH CENTER IS INDEPENDENTLY ACTIVATED BY LIGHT
- ELECTRONS FLOW FROM PSII
 PSI
- PSII OXIDIZES H₂O
- PSI REDUCES NADP⁺
- H₂O OXIDATION IS COUPLED TO NADP⁺ REDUCTION

ELECTRON TRANSFER OCCURS BETWEEN MEMBRANE-BOUND PARTICLES

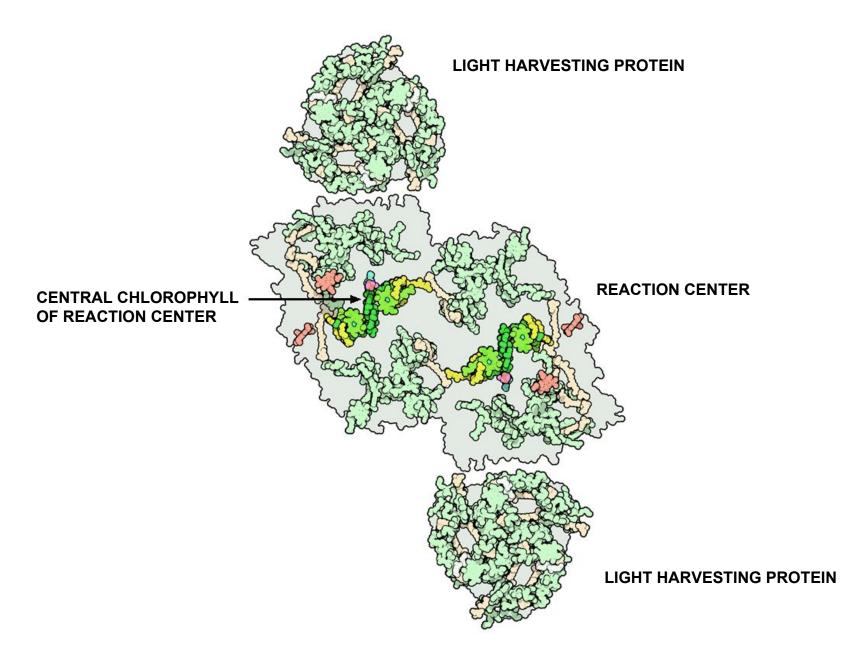
- PSII
- CYTOCHROME b₆f COMPLEX
- PSI
- MOBILE ELECTRON CARRIERS SHUTTLE THE ELECTRONS BETWEEN THESE COMPLEXES
 PLASTOQUINONE (Q) LINKS PSII TO CYTOCHROME b₆f COMPLEX
 - Q IS REDUCED TO QH, BY PSII
 - THEN QH₂ REDUCES CYTOCHROME b₆ COMPLEX
 - PLASTOCYANIN (PC) LINKS CYTOCHROME b₆f TO PSI

THE ELECTRONS ULTIMATELY REDUCE NADP⁺

- THE ENZYME IS FERREDOXIN-NADP⁺ REDUCTASE (FNR)
- DURING THE ENTIRE FOUR-ELECTRON PROCESS
 WATER IS OXIDIZED
 - THE ELECTRONS PASS THROUGH A Q-CYCLE
 - A TRANSMEMBRANE PROTON GRADIENT IS GENERATED
 - THE pH IS LOWER IN THE THYLAKOID LUMEN
 - THE FREE ENERGY OF THIS GRADIENT DRIVES ATP SYNTHESIS


THE "Z-SCHEME"

- A ZIG-ZAG DIAGRAM REPRESENTING PROSTHETIC GROUPS INVOLVED IN PHOTOSYNTHESIS
- TWO LOCI REPRESENT PSII AND PSI
- ELECTRONS FLOW FROM <u>LOW TO HIGH</u> REDUCTION POTENTIALS


PSII

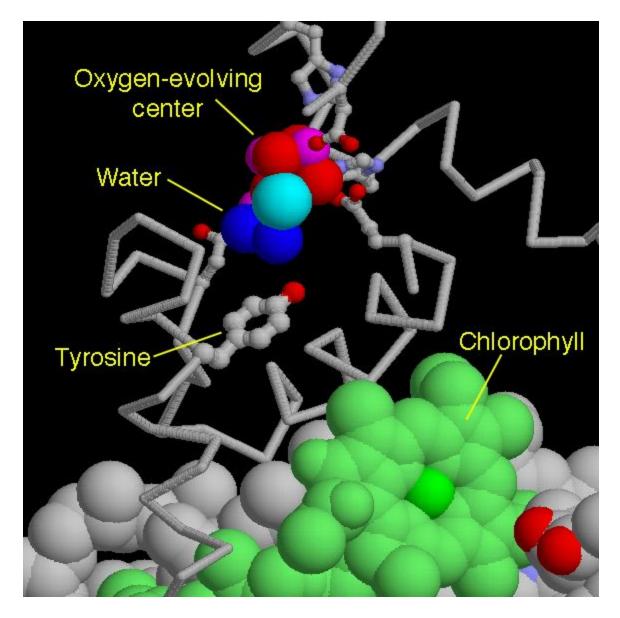
- CRYSTALLIZES AS A SYMMETRIC DIMER
- EACH PROTOMER WITH PSEUDO TWO-FOLD SYMMETRY
- REACTION CENTER COFACTORS ORGANIZED SIMILARLY TO PbRC
 - Chl a INSTEAD OF BChl b
 - Pheo a INSTEAD OF BPheo b
 - PLASTOQUINONE INSTEAD OF MENAQUINONE
- P680 : TWO Chl a RINGS SIMILAR TO "SPECIAL PAIR"

PHOTOSYSTEM II (PDB 1s5I): "MOLECULE OF THE MONTH" NOVEMBER 2004

PSII (1s5I): TOP VIEW, SHOWING PIGMENT MOLECULES

EVENTS AT PSII

- FIRST PHOTON EVENT
 EJECTED ELECTRON
- TRANSFERRED THRU ACCESSORY Chl a TO Pheo a, AND THEN TO Q_A
- Q_A IS THE BOUND PLASTOQUINONE
- THEN THE ELECTRON IS TRANSFERRED TO Q_B


A SECOND PHOTON EVENT OCCURS

- THE SECOND ELECTRON IS TRANSFERRED TO Q_B
- Q_B (WITH 2 ELECTRONS) TAKES UP 2 PROTONS
 AT STROMAL SURFACE
- Q_BH₂ (PLASTOQUINOL) EXCHANGES WITH MEMBRANE-BOUND POOL OF PLASTOQUINONE MOLECULES
- DCMU INHIBITS PHOTOSYNTHESIS
 - IT COMPETES WITH PLASTOQUINONE MOLECULES FOR THE Q_R-BINDING SITE ON PSII

THE OXYGEN EVOLVING CENTER (OEC)

- A "WATER-SPLITTING" ENZYME
- MUST UNDERGO 4 LIGHT-DEPENDENT REACTIONS BEFORE RELEASING O₂
- 4 PROTONS ARE RELEASED TO INNER THYLAKOID SPACE IN A STEPWISE MANNER
- REACTION DRIVEN BY EXCITATION OF PSII RC
- $A Mn_4CaO_4COMPLEX$

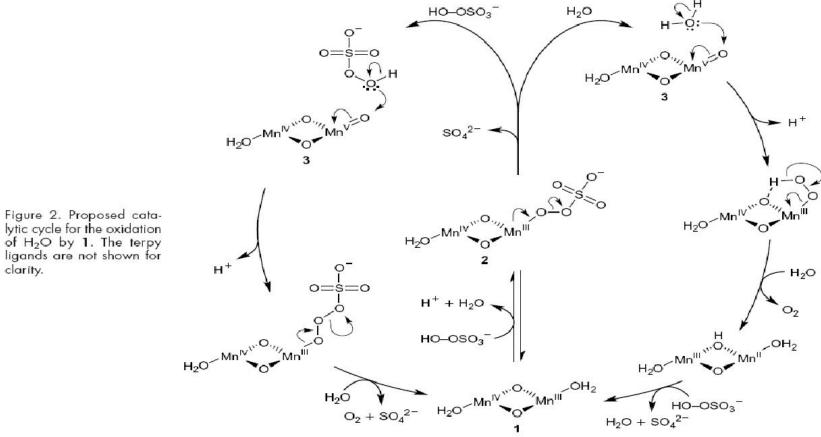
THE OXYGEN EVOLVING CENTER

THE TYROSINE RADICAL BRIDGES THE WATER MOLECULE AND THE CHLOROPHYLL MOLECULE

MECHANISM OF OEC

NOT CLEAR

- OEC PROGRESSES THROUGH 5 STATES
- Mn CHANGES ITS OXIDATION STATE AS THE OEC CYCLES THROUGH ITS STATES
- PROTONS, ELECTRONS ABSTRACTED AS Mn CYCLES THROUGH II,III,IV, AND V STATES
- EACH ELECTRON IS INDIVIDUALLY TRANSFERRED TO P680⁺
- TyrO·, A TRANSIENT RADICAL, RELAYS THE e⁻
 WHERE ELSE HAVE YOU SEEN THE TYROSYL RADICAL?


PSII OEC

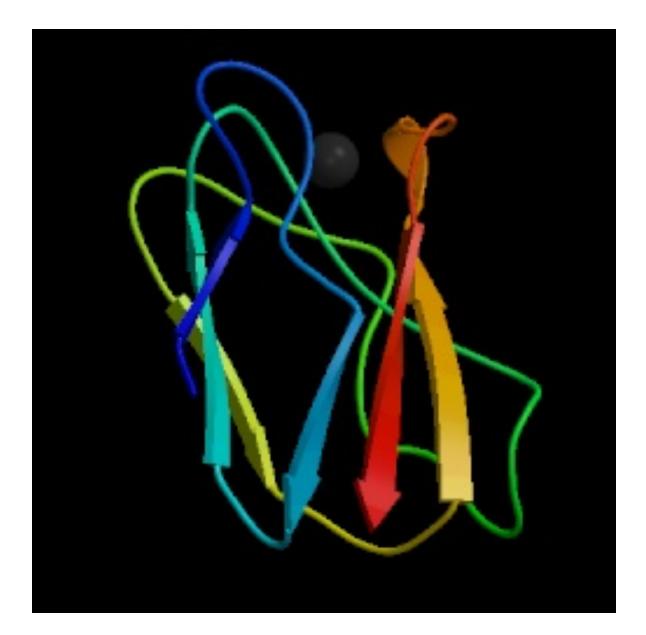
RECENT REFERENCES:

J. Ch. Ed. Vol. 82 (5) May 2005, pages 791 - 794Although this article describes experiments regarding this bioinorganic molecule, there is a good diagram of the proposed catalytic mechanism on page 792 for "complex 1", a synthesized molecule which is a functional model of the Mn₄ cluster.

A fully manipulable Chime version of the four-manganese center in PSII is available at the following web site:

http://www.jce.divched.org/JCEWWW/Features/MonthlyMolecules/2005/ May/

clarity.


Journal of Chemical Education : Vol 82(5) May 2005 Pages 791-794

ELECTRONS ARE TRANSFERRED THROUGH Cyt b₆f COMPLEX

- VIA A Q POOL (PLASTOQUINONE)
- ELECTRON FLOW OCCURS THROUGH A "Q-CYCLE"
- FOR EACH e⁻ TRANSPORTED, 2 PROTONS ARE TRANSPORTED ACROSS THYLAKOID MEMBRANE
 8 H⁺ ARE TRANSPORTED (THERE ARE 4 e⁻ FROM THE TWO WATER MOLECULES THAT ARE SPLIT
- THIS ELECTRON TRANSPORT IS RESPONSIBLE FOR GENERATING MOST OF THE ELECTROCHEM-ICAL PROTON GRADIENT

PLASTOCYANIN : A "BLUE COPPER" PROTEIN

- MEDIATES ELECTRON TRANSFER BETWEEN CYT f AND PSI
 - CYT f IS THE TERMINAL ELECTRON CARRIER OF THE CYT b₆f COMPLEX
 - ON THE THYLAKOID LUMENAL SURFACE
- ITS REDOX CENTER CONTAINS COPPER
 CYCLES BETWEEN Cu(I) AND Cu(II) OXIDATION STATES

IN-CLASS CHIME EXERCISE

LOOK AT PDBid 1PLC

FIND:

THE "β-SANDWICH" IDENTIFY THE COPPER ION FIND THE 4 LIGANDS THAT TETRAHEDRALLY COORDINATE THE Cu ION

LOCATE THE 6 ASP AND GLU RESIDUES THAT FORM A (-) CHARGED PATCH ON THE SURFACE

CYT f HAS A LYS 187 SIDECHAIN THAT IS ONE OF 5 (+) CHARGED RESIDUES ON ITS SURFACE. IT CAN BE CROSS- LINKED (EXPERIMENTALLY) TO ASP 44 ON PC, WHICH IS ONE OF THE ASPs IN THE (-) CHARGED PATCH

SUGGEST AN INTERMOLECULAR MECHANISM BY WHICH CYT f AND PC ASSOCIATE

"TUNING" THE REDOX POTENTIAL

- PROTEINS CAN CHANGE THE STANDARD REDUCTION POTENTIALS OF THEIR REDOX CENTERS THROUGH A STRAIN MECHANISM
- FOR EXAMPLE:
 - E^{O'} FOR THE NORMAL Cu(II)/Cu(I) HALF-REACTION IS 0.158 VOLTS
 - E^{O'} FOR THE SAME HALF-REACTION IN PC IS 0.370 V

LIGAND GEOMETRY OF 4-COORDINATED COPPER ATOMS

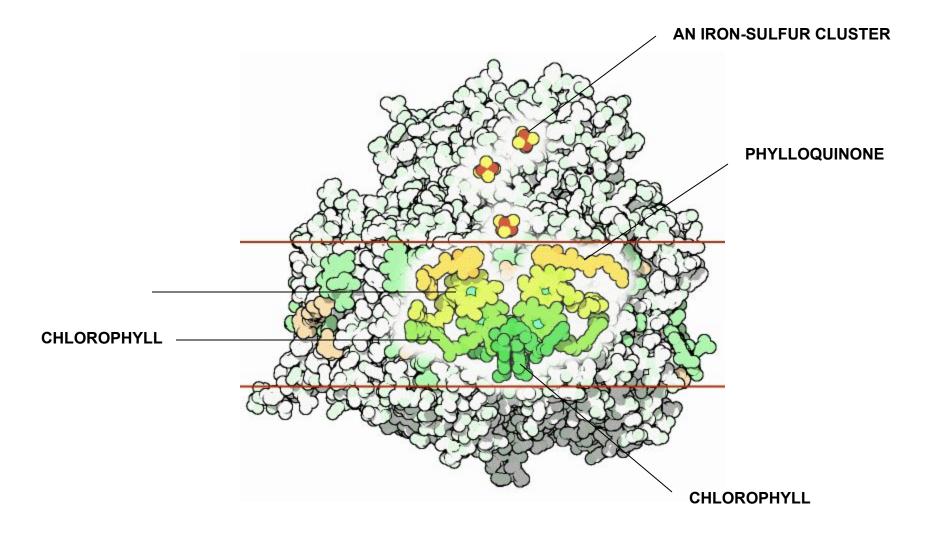
- USUALLY SQUARE PLANAR FOR Cu(II)
- USUALLY TETRAHEDRAL FOR Cu(I)
- IN PC, THE Cu ATOM HAS A DISTORTED TETRAHEDRAL GEOMETRY
 - CYS
 - MET
 - **TWO HIS RESIDUES**

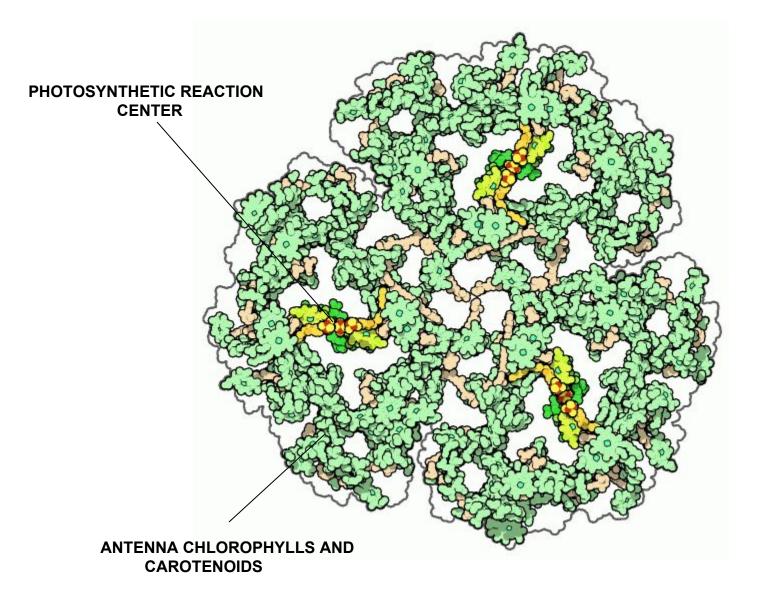
 THE PROTEIN IMPOSES THE TETRAHEDRAL GEOMETRY ON THE Cu(II)
 STRAIN
 LOOKS MORE LIKE THE Cu(I) GEOMETRY

ELECTRON TRANSFER IS FACILITATED BY THE STRAIN

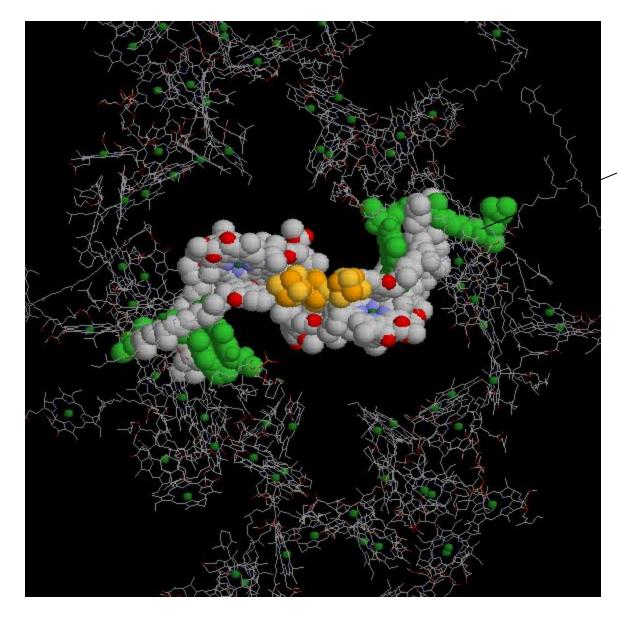
- THE ΔE^O IS GREATER FOR THE ELECTRON TRANSFER EVENT IN PLASTOCYANIN
- SINCE $\Delta G^{\circ} = -nF \Delta E^{\circ}$, THE REACTION IS MORE SPONTANEOUS UNDER STANDARD CONDITIONS

IN CYANOBACTERIA, THESE ARE TRIMERS


- EACH PROTOMER HAS
 - **31 TRANSMEMBRANE HELICES ANCHOR EACH MONOMER**
 - 96 CHLOROPHYLL MOLECULES
 - 22 CAROTENOIDS
- CHLOROPHYLLS AND CAROTENOIDS OPERATE AS A LIGHT-HARVESTING COMPLEX
- EACH MONOMER HAS AN ACTIVE CENTER
 - ONE OR TWO CHLOROPHYLL MOLECULES (P700)
- P700 IS EXCITED BY PHOTONS FUNNELED THROUGH ANTENNAE PIGMENTS
 - EXCITON TRANSFER


P700 IS PHOTO-EXCITED TO P700^{*}

- P700^{*} PASSES ITS EXCITED ELECTRON ON THROUGH A CHAIN OF ELECTRON CARRIERS
 - EACH ONE AT A LOWER REDUCTION POTENTIAL
- THE CARRIERS INCLUDE
 - Chl a
 - PHYLLOQUINONE
 - THREE [4Fe-4S] CLUSTERS
- OXIDIZED P700 (P700⁺) IS A WEAK OXIDANT
 - E^{O'} IS ABOUT 0.4 V
- THE PROSTHETIC GROUPS HAVE AN APPROXIMATE 2-FOLD SYMMETRY


PHOTOSYSTEM I (): MOLECULE OF THE MONTH

PS I AS VIEWED FROM THE TOP

PDB 1jbo : PHOTOSYSTEM I COFACTORS

A SPECIAL PAIR CHLOROPHYLL

THERE ARE 2 POSSIBLE PATHWAYS FOR ELECTRON FLOW IN PSI

- NON-CYCLIC
- CYCLIC

THE NON-CYCLIC PATHWAY

THE NON-CYCLIC PATHWAY

- MOST ELECTRONS FOLLOW THIS PATHWAY
- PASSED ON TO A SOLUBLE FERREDOXIN
 - LOCATED IN THE STROMA
 - CONTAINS A [2Fe-2S] CLUSTER
- TWO REDUCED Fd MOLECULES EACH SEND AN ELECTRON
 ON TO THE ENZYME "FERREDOXIN-NADP⁺ REDUCTASE (FNR)
 - CONTAINS FAD
- FAD IS REDUCED TO FADH,
- FADH₂ REDUCES 2 NADP⁺ MOLECULES
- NADPH IS THE FINAL PRODUCT OF CHLOROPLAST LIGHT-REACTION

OVERALL RESULT OF NON-CYCLIC PATHWAY

- 4 ELECTRONS ARE TRANSFERRED FROM 2 WATER MOLECULES TO 2 NADP⁺ s TO PRODUCE 2 NADPH MOLECULES
- A TRANSMEMBRANE H⁺ GRADIENT IS ESTABLISHED
 - 12 H⁺ TRANSLOCATED INTO THYLAKOID LUMEN CAN DRIVE SYNTHESIS OF ~ 3 ATP MOLECULES
- NOTE: 2 H⁺ ARE RELEASED INTO LUMEN FOR EACH H₂O SPLIT. 4 H⁺ ARE USED UP IN STROMA WHEN 4²e⁻ REDUCE 2 NADP⁺
- 1 O₂ MOLECULE IS FORMED
 A TOTAL OF 8 PHOTONS ARE ABSORBED

THE CYCLIC PATHWAY

- THE RETURN OF SOME ELECTRONS TO THE POOL OF PLASTOQUINONES (Q-POOL)
- OCCURS THROUGH CYT b₆
- PROTONS ARE TRANSLOCATED ACROSS THE THYLAKOID DURING THIS PROCESS
- BECAUSE IT'S A CYCLIC PROCESS:
 - INDEPENDENT OF PSI
 - NO O₂ EVOLVED

PROBABLE REASON FOR A CYCLIC ALTERNATIVE

- INCREASES LEVEL OF ATP RELATIVE TO THAT OF NADPH
- CELL PRODUCTION OF EACH OF THESE ACCORDING TO ITS NEEDS
- THE REGULATORY MECHANISM IS NOT YET KNOWN

IN-CLASS EXERCISE

- CALCULATE ΔG^{o} AND ΔE^{o} FOR THE LIGHT REACTION IN PLANTS
 - (IE, FOR THE 4 ELECTRON OXIDATION OF 2 H₂Os AND SUBSEQUENT REDUCTION OF 2 NADP+).
- IS THIS PROCESS SPONTANEOUS UNDER PHYSIOLOGIC STANDARD CONDITIONS?
 - WHAT SUPPLIES THE ENERGY TO DRIVE THE REACTION?
- HERE ARE THE "HALF-REACTIONS"
 - $O_2 + 4 e^- + 4 H^+ \square 2 H_2 O = E^{o'} = 0.815 V$
 - NADP⁺ + H⁺ + 2 e⁻ \Box NADPH $E^{o'}$ = -0.324 V
- YOU WILL NEED TO USE : $\Delta G^{o'} = -nF\Delta E^{o'}$
 - F = 96,485 J V⁻¹ MOL⁻¹

STUDY QUESTION FOR EXAM #6

 I WILL GIVE YOU THE PICTURE OF TWO-CENTER PHOTOSYNTHESIS AS WELL AS THAT OF THE "Z-SCHEME". THEY WILL NOT BE COMPLETE, THOUGH.

 I WILL ASK QUESTIONS ABOUT EACH OF THESE, AND THE ANSWERS WILL BE EASY TO DETERMINE, AS LONG AS YOU UNDERSTAND HOW THE PROCESS WORKS.